Unifying Concepts:
- Systems, order and organization
- Evidence, models and explanations
- Change, constancy and measurement
 Evolution and equilibrium
- Form and function

Big Idea:
- Electrical circuits require a complete loop through which an electrical current passes.
- Electricity in circuits can produce light, heat and other forms of energy.

Sub Concept I: A complete electric circuit is required to light a light bulb.

Sub Concept II: Different types of materials or devices do different jobs.
 Different types of electric circuits show different characteristics.

Sub Concept III: Electricity can produce heat and light

Sub Concept IV: Different strategies can be used to troubleshoot circuits

Sub Concept V: Electrical circuits are used to design and build useful devices

Description of Assessment: End-of-unit assessment, writing prompts; notebooks, review of student work
Science Process Skills: Observing, Questioning, Communicating, Predicting, Inferring, Applying
National Science Standards: K-4 Physical Science (Light, Heat, Electricity and Magnetism) Science as Inquiry (Abilities and Understandings about Inquiry)
Rhode Island Science Standards: Forces of Nature

KITES 2002
Electric Circuits Storyline

Lesson 1
Thinking About Electricity and Its Properties
Discussing what students know and would like to know

Lesson 2
What Electricity Can Do
Lighting a light bulb

Lesson 3
A Closer Look at Circuits
Looking at different ways to connect the parts

Lesson 4
What Is Inside a Light Bulb?
Understanding the parts of a bulb and the path of electricity through it

Lesson 5
Building a Circuit
Learning how to use devices to help build circuits

Lesson 6
What’s Wrong with the Circuit?
Using a circuit tester to troubleshoot

Lesson 7
Conductors and Insulators
Understanding the behavior of conductors and insulators

Lesson 8
Making a Filament
Learning that electricity can be used to generate light and heat

Lesson 9
Hidden Circuits
Using a circuit tester to locate hidden conductors

Lesson 10
Deciphering a Hidden Language
Using symbols to create circuit diagrams which represent real circuits

Lesson 11
Exploring Series and Parallel Circuits
Identifying and building series/parallel circuits

Lesson 12
Learning About Switches
Building switches and learning why they are important

Lesson 13
Constructing a Flashlight
Using what has been learned about series/parallel circuits to construct a flashlight.

Lesson 14
Working with a Diode
Understanding how a diode works

Lesson 15
Planning and Wiring a House
Using different strategies to
Electric Circuits Storyline

Unifying Concepts:
- Systems, order and organization
- Evidence, models and explanations
- Change, constancy and measurement
- Evolution and equilibrium
- Form and function

Big Idea:
Electrical circuits require a complete circle through which an electrical current passes. Electricity in circuits can produce light, heat and other forms of energy.

Sub Concept I:
A complete electric circuit is required to light a light bulb.

Sub Concept II:
Different types of materials or devices do different jobs. Different types of electric circuits show different characteristics.

Sub Concept III:
Electricity can produce heat and light

Sub Concept IV:
Different strategies can be used to troubleshoot circuits

Sub Concept V:
Electrical circuits are used to design and build useful devices

<table>
<thead>
<tr>
<th>Lesson 1</th>
<th>Thinking About Electricity and Its Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesson 2</td>
<td>What Electricity Can Do Lighting a light bulb</td>
</tr>
<tr>
<td>Lesson 3</td>
<td>What Is Inside a Light Bulb? Looking at different ways to connect the parts</td>
</tr>
<tr>
<td>Lesson 4</td>
<td>A Closer Look at Circuits</td>
</tr>
<tr>
<td>Lesson 5</td>
<td>Building a Circuit Learning how to use devices to help build circuits</td>
</tr>
<tr>
<td>Lesson 7</td>
<td>Conductors and Insulators Understanding the behavior of conductors and insulators</td>
</tr>
<tr>
<td>Lesson 11</td>
<td>Exploring Series and Parallel Circuits Identifying and building series/parallel circuits</td>
</tr>
<tr>
<td>Lesson 12</td>
<td>Learning About Switches Building switches and learning why they are important</td>
</tr>
<tr>
<td>Lesson 13</td>
<td>Constructing a Flashlight Using what has been learned about series/parallel circuits to construct a flashlight</td>
</tr>
<tr>
<td>Lesson 14</td>
<td>Working with a Diode Understanding how a diode works</td>
</tr>
<tr>
<td>Lesson 15</td>
<td>Planning and Wiring a House Using different strategies to</td>
</tr>
</tbody>
</table>

Description of Assessment:
End-of-unit assessment, writing prompts; notebooks, review of student work

Science Process Skills:
- Observing
- Questioning
- Communicating
- Predicting
- Inferring
- Applying

National Science Standards:
- K-4 Physical Science (Light, Heat, Electricity and Magnetism)
- Science as Inquiry (Abilities and Understandings about Inquiry)

Rhode Island Science Standards:
- Forces of Nature

KITES 2002