Seattle Public Schools Science Standards

Sound

(Science and Technology for Children)

Grade 3

PHYSICAL SCIENCE

EARL #1 The student understands and uses scientific concepts and principles.

Component	Benchmarks	Lesson #s
1.1 – Use properties to	Sound, light, and waves	All lessons
identify, describe, and	demonstrate that sound is caused by vibrations	
categorize substances,	experiment with and describe changes in sound	
materials, and objects.	patterns from high to low pitch (e.g., vibrations,	
	echoes, volume, and pitch)	
	construct and observe a model to investigate the	
	vibrations of the eardrum, which the brain	
	interprets as sound	
1.2 – Recognize the	System	All lessons
components, structure, and	demonstrate how the parts of a system interact to	
organization of systems and	produce changes (e.g., making sounds with	
the interconnections within	musical instruments)	
and among them.		

SCIENCE SKILLS/ PROCESSES

EARL #2 The student understands the skills and processes of science and technology.

2.1 – Develop the abilities	Questioning	All lessons
necessary to do scientific	• ask questions about objects, organisms, and events	
inquiry.	in the environment	
	Designing and conducting investigations	9 – 16
	plan and conduct simple investigations, using	
	appropriate tools, measures, and safety rules	
	Evidence and explanation	1 – 14
	use data to construct reasonable explanations	
	Modeling	8, 14
	model systems, events, or processes by	
	representing them with concrete objects,	
	analogies, or other conceptual or physical	
	constructs (e.g., graphic organizers)	
	Communication	All lessons
	record and report observations, explanations, and	
	conclusions using oral, written, and mathematical	
	expression	
2.2 – Apply science	Identifying problems	8, 14
knowledge and skills to solve	identify problems in which science and	
problems or meet challenges.	technology can and have been used to find	
	solutions (e.g., hearing aids, voice synthesizers,	
	dog whistles, radios)	

Designing and testing solutions	15, 16
• propose, design, and test a solution to a problem	
(e.g., sound making device)	
Evaluating potential solutions	15, 16
• evaluate how well a design or a product solves a	
problem	

SCIENTIFIC THINKING

EARL #3 The student understands the nature and contexts of science and technology.

3.1 – Understand the nature	Intellectual honesty	All lessons
of scientific inquiry.	understand that all scientific observations should	
	be reported accurately even when they contradict	
	expectations	
	Limitations of science and technology	All lessons
	distinguish between questions that can be	
	answered with science and technology and those	
	that cannot	
	Dealing with inconsistencies	4, 9, 16
	explain why similar investigations may not	
	produce similar results	
	Evaluating methods of investigation	3 – 16
	recognize that results of scientific investigations	
	can come from expected and unexpected sources	
	(e.g., through sharing results of investigations)	
	Evolution of scientific ideas	All lessons
	• know that ideas in science change as new	
	scientific thinking, theories, and evidence arise	
3.2 – Know that science and	All peoples contribute to science and technology	1 – 14
technology are human	begin to understand how science and technology	
endeavors, interrelated to	have been practiced by all peoples throughout	
each other, to society and to	history	
the workplace.	Relationship of science and technology	2, 10 - 12
	recognize that people have invented tools for	
	everyday life and for scientific investigations	
	Careers and occupations using science,	4, 8,
	mathematics, and technology	14 – 16
	• identify the knowledge and skills of science,	
	math, and technology used in common	
	occupations	